Fluid Fertilizers: Properties and Characteristics

Dale F. Leikam

Fluid Fertilizer Foundation www.FluidFertilizer.com

Dale.Leikam@sbcglobal.net 785-776-0273 785-770-0009

Western Fluid Fertilizer Technology Workshop

Piccadilly Inn Airport

Fresno, CA

Tuesday, December 9, 2008

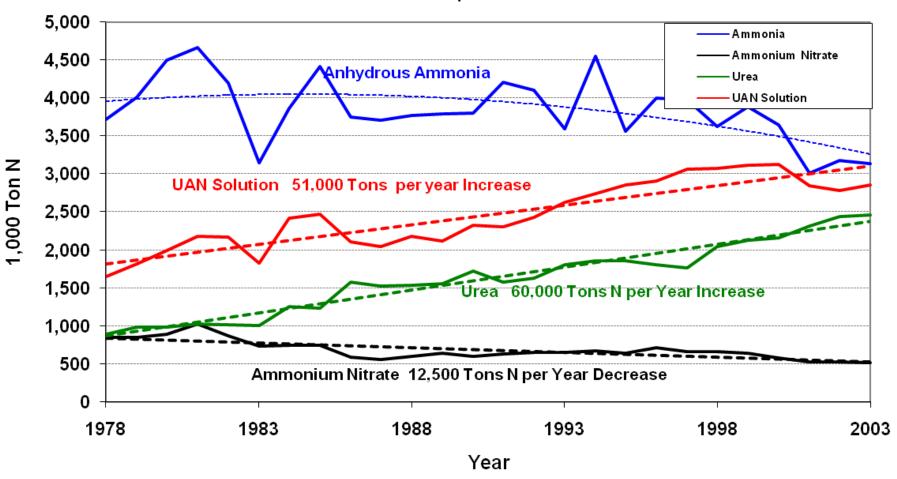
	12:45	Welcome and Announcements (R. Hopkins)				
12:45	1:15	Fluid Fertilizer Solutions For Crop Production (L. Murphy)				
1:15	2:00	West Coast/Global Fertilizer Outlook and Trends; 2009 and Beyond (J. Yost)				
2:00	2:15	Break				
		Session A	Session B			
2:15	3:15	Session A Local Plant Operation/Maintenance Issues (L. Lankenau)	Session B New Products, Techniques and Equipment (R. Mikkelsen)			
2:15 3:15	3:15 4:15					

Wednesday, December 10, 2008

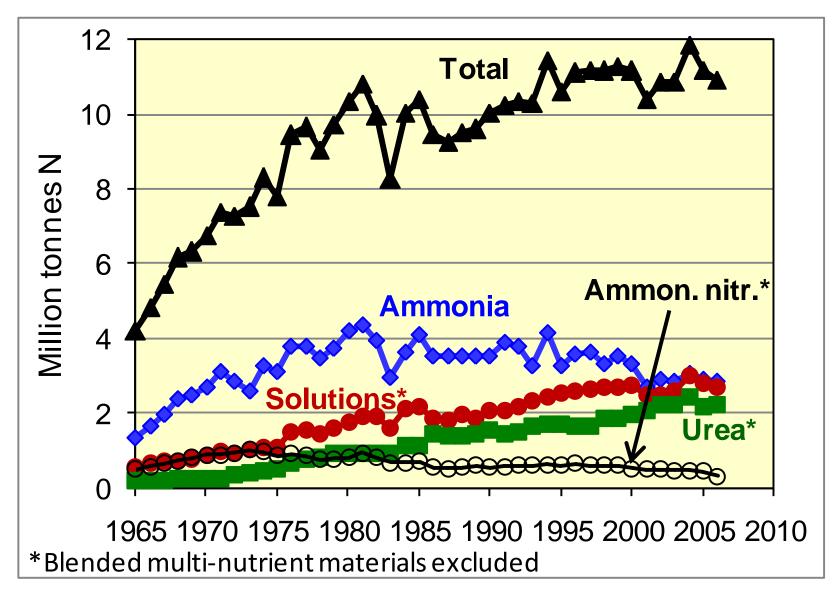
		Session A	Session B
8:00	9:15	Advances In Drip Systems and Nutrie	ent Management (A. Lobato, Chile)
9:15	10:00	Producing Urea, K ₂ CO ₃ , KNO ₃ and 10-34-0 Solutions: Plant Operation Issues. (M. Orr, R. Satterfield, etc.)	Nutrient/Water Application Uniformity via Fertigation (L. Schwankl)
10:00	10:20	Break -	
10:20	11:20	Storage Tank Failures and Maintenance (C. Kominski)	Drip Systems: Soil P Movement Of Various P Sources (C. Krauter)
11:20	12:00	Soil & Water Protection: Regulatory Update & Issues (R. Pinel)	Foliar Nutrient Application Update: Opportunities & Solutions (P. Brown)
12:00	12:20	Fertilizer Chain of Custody, Other Operation Issues, Questions and Discussion. (Group)	\downarrow
12:20	12:30	Wrap-Up, Thank You, H	lave a safe trip home!!

Fluid Fertilizers

- > Increasing in popularity in U.S. and elsewhere
- > Advantages include
 - Flexibility and versatility in application
 - ✓ Efficiency and adaptability
 - Potential benefits of continuous bands
 - ✓ Ease of handling
 - ✓ Does not segregate
 - ✓ Etc.

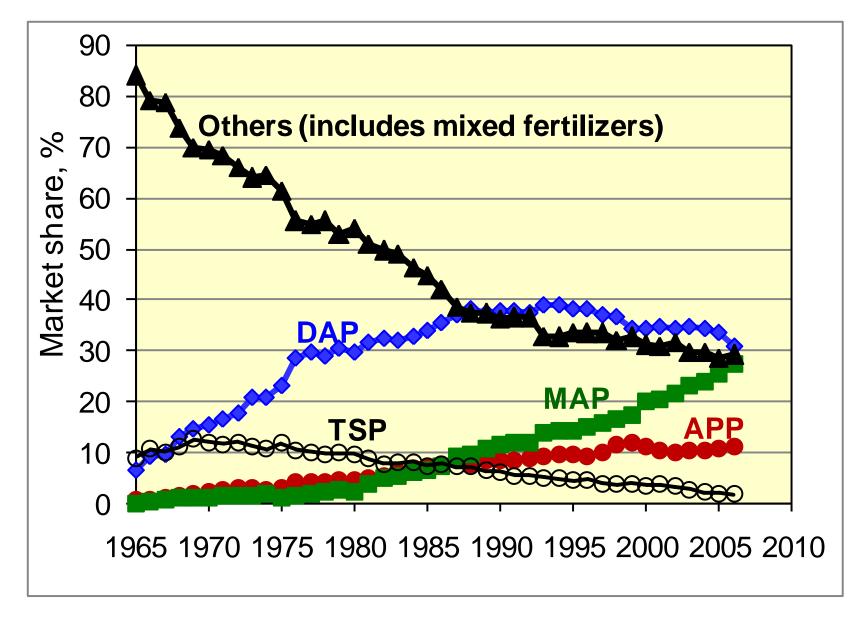

> Limitations

- Generally higher purchase cost than solid fertilizers
- Salt-out and precipitate formation potential with certain products and blends



U.S. Nitrogen Fertilizer Consumption

Tons N/year



USA N fertilizer consumption by product.

Data source: Commercial Fertilizers, AAPFCO & TFI

USA P fertilizer market share.

Data source: Commercial Fertilizers, AAPFCO & TFI

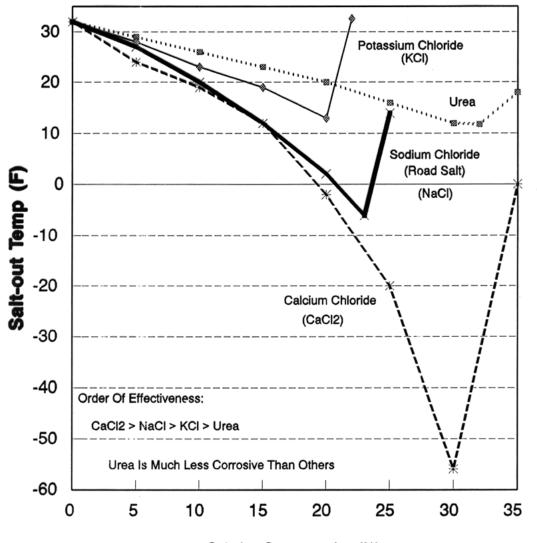
Fluid Fertilizers

Terminology, Solubility, Density and N Solutions

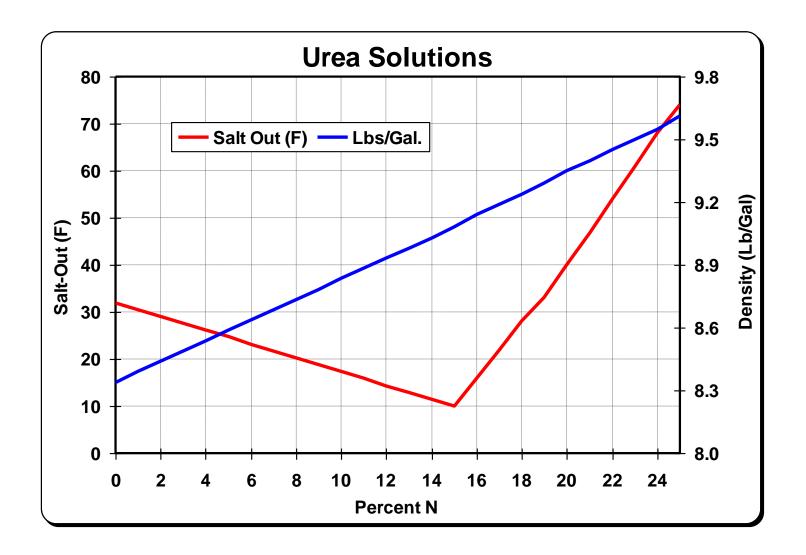
Solution – All salts totally dissolved in water. No solids allowed!

- **Slurry** Fluid product containing water, dissolved salts and undissolved salts. Settles out quickly. Not Common.
- **Suspension** Fluid product containing water, dissolved salts, fine undissolved salt crystals and a suspending agent – normally attapulgite clay.

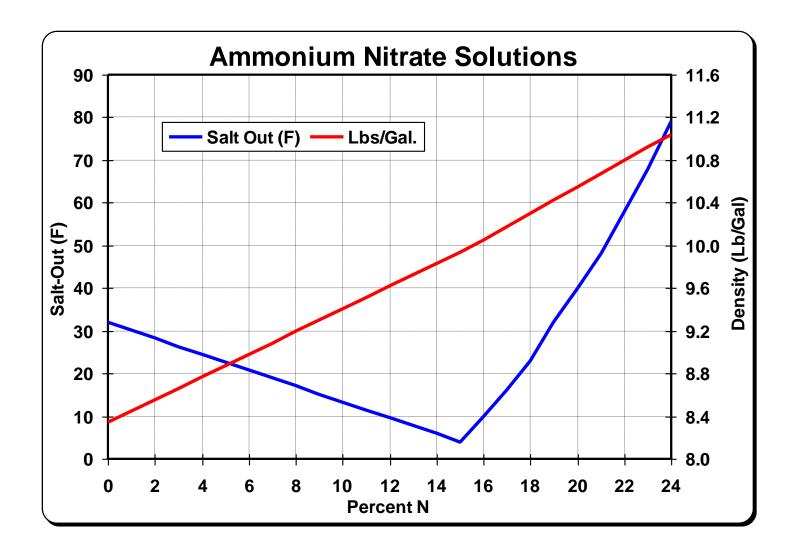
Muddy Water – Solutions with undissolved solids or suspensions containing too few undissolved salt crystals. Not a good range to try and operate in!!.


Falling Out Of Solution – No such thing.

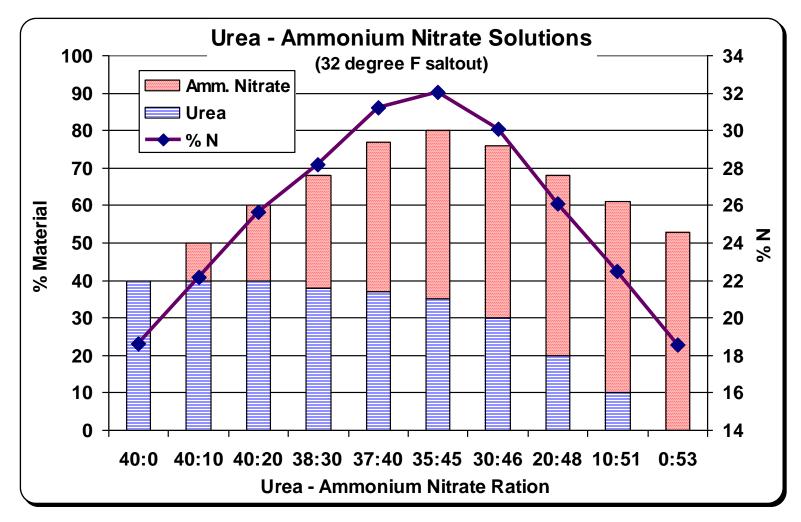
Salt-Out – Crystals form as solution cools; goes back in solution as product is warmed. Example; UAN Solution.

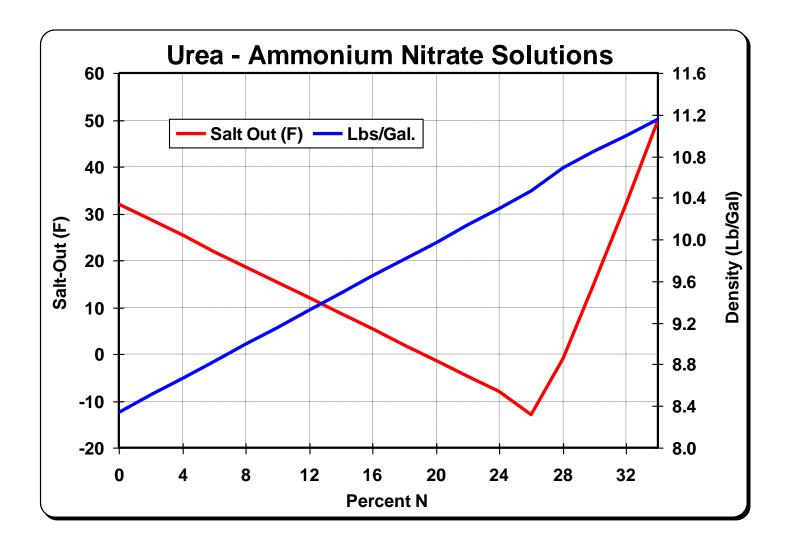

Precipitate Formation – Non-crystalline mass forms which has much lower solubility than original ingredients in solution. Example; Improperly stored fluid phosphates

EFFECT OF SALTS ON FREEZING POINT

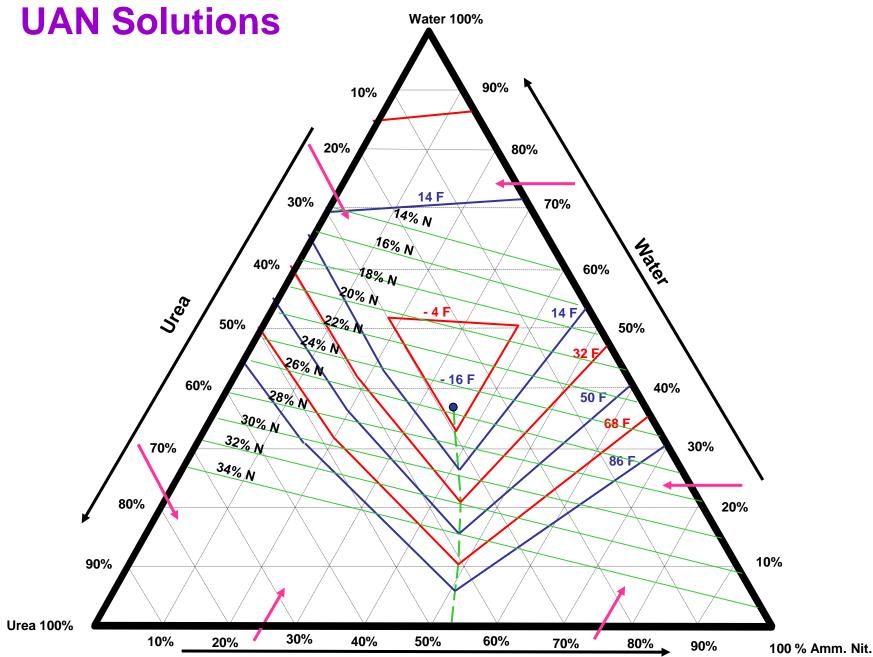


Solution Concentration (%)




Eutectic Point – point of maximum solubility

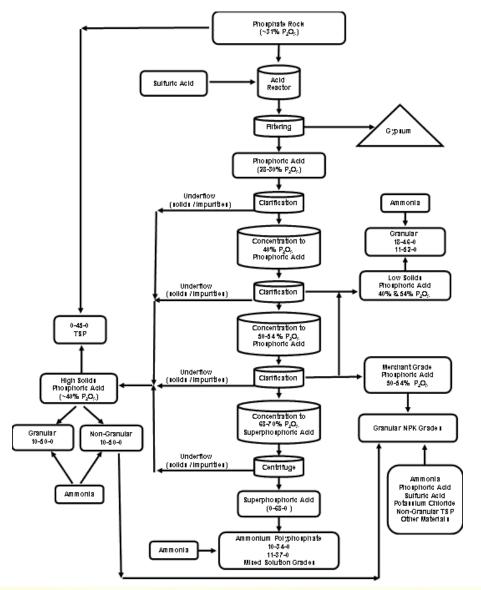
32% UAN contains:


• approximately 35% ammonium nitrate, 45% urea and 20% water at eutectic point

28% UAN contains 30% water

UAN Solution

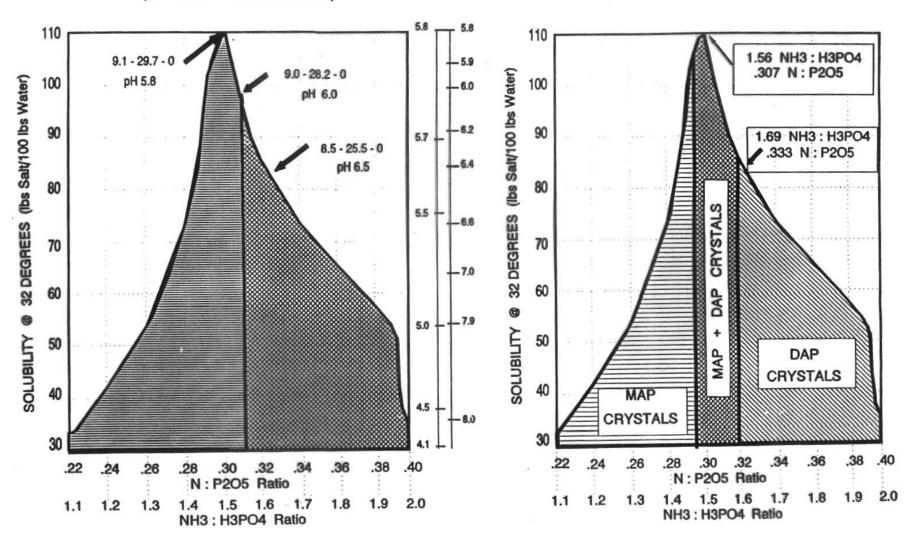
- > Salt-out is an issue in many environments
 - \checkmark There is very little water in UAN solution.
 - Warm water has ability to dissolve more salts than cold water
 - ✓ Salt-out occurs when salt content exceeds solubility at a given product temperature
 - Crystals form on tank walls as temperature cools
 - Eventually salts accumulate at tank bottom
 - ✓ Salts will re-dissolve with sufficient heat and recirculation



Lowering Water Freezing Temperature With UAN Soulution					
Freezing					
% N	Temperature	F	28-0-0	32-0-0	
g			gal per 1	gal per 100 gal water	
0	32		0	0	
2	27		6.1	5.2	
4	23		13.1	11.2	
6	18		21.5	18.2	
8	14		31.5	26.2	
10	9		43.7	35.6	
12	5		59.0	47.2	
14	0		78.7	61.2	

Liquid Phosphate Products

Fluid Phosphate Products and Characteristics



SOLUBILITY OF AMMONIUM PHOSPHATES

(ORTHO- SOLUTIONS)

(ORTHO- SUSPENSIONS)

Phosphoric Acid

Wet-Process Acid

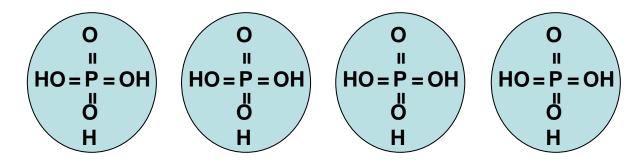
- Black, brown, green (calcined)
- Contains many rock impurities
- Used in fertilizer industry

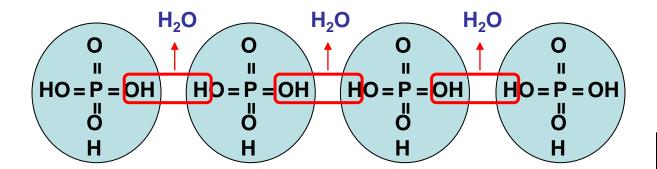
Furnace, food-grade acid

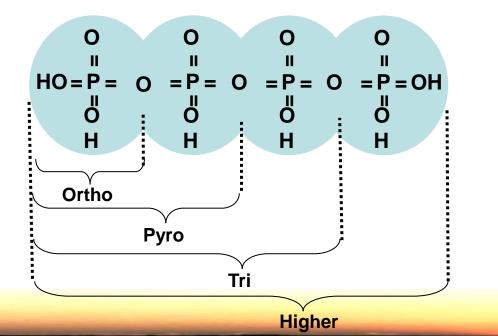
- Clear
- No impurities
- Food and industrial processes

Orthophosphoric Acid Examples

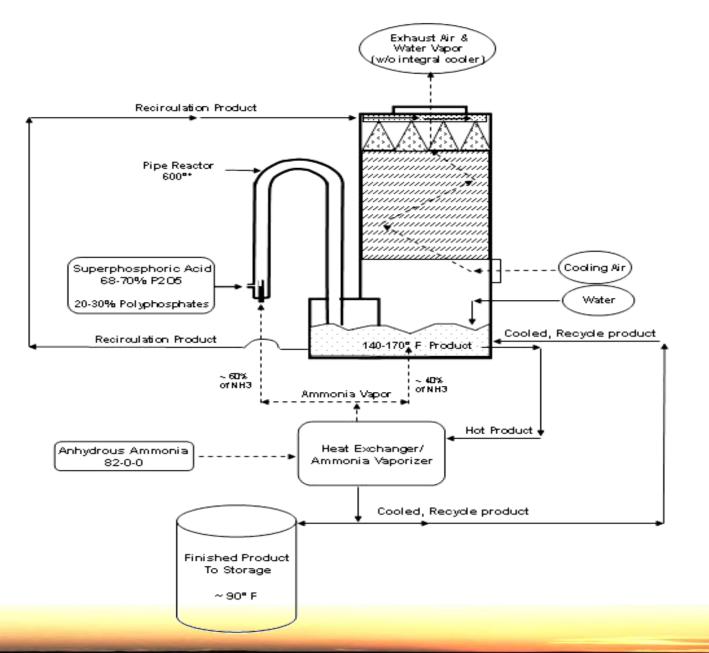
Source	Acid 1	Acid 2	Acid 3	Acid 4
P2O5	61	53.2	52.8	57
MgO	0.3	1.2	1.1	0.2
Fe2O3	0.35	0.5	1	0.32
AI2O3	0.18	0.4	0.5	0.16
F	0.3	0.4	2.1	0.1
Solids	0.5	0.1	0.1	Nil
Visc.@100F	40	90	100	27
P/F	89	58	46	248


Source: Texas Gulf




Ammonium Polyphosphate

- Primary P source for much of fluid industry
- Most NPKS products made from APP
- Produced from ammonia, superphosphoric acid and water
- Generally equal agronomic performance as compared to solid fertilizers
 - ✓ If applied at equal P rates in similar manner
 - Potentially superior to solids if discontinuous bands result from with solid fertilizer band applications
- Contains most P as polyphosphate
 - Polyphosphates and orthophosphates are considered agronomically equal



Heat links phosphates by removing chemically bound water

Heat comes from chemical reaction of reacting phosphoric acid with ammonia

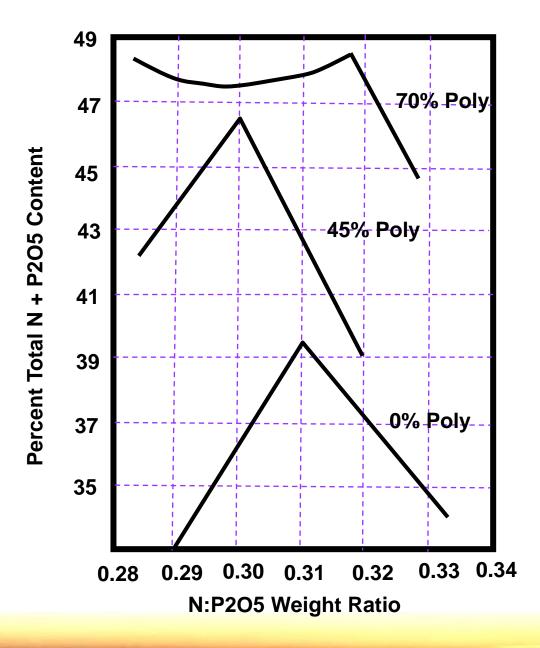
Flow Diagram For Ammonium Polyphosphate Production 10-34-0 & 11-37-0

Why Do We Want Polyphosphates ?

- > Not necessarily for agronomic reasons
- > Manage sludge problems in fluid P products
 - Polyphosphates sequester metal cation impurities in the product (especially Mg) to form relatively insoluble precipitates
 - Provides superior storage qualities
- > Increased analysis compared to orthophosphate
- Provides ability to include higher amounts of micronutrients in product (not Ca or Mg)

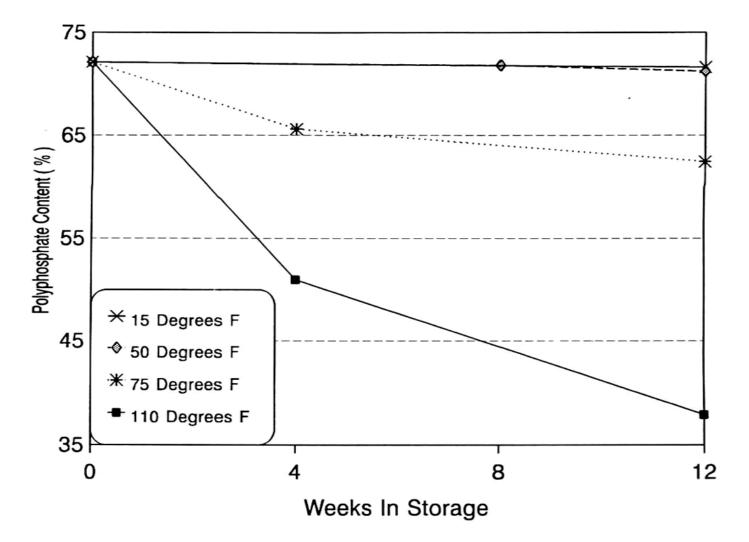
Hydrolysis Of Polyphosphate To Orthophosphate

Soil Temperature	24 Hour Polyphosphate Hydrolysis (%)		
41 F	30-40 %		
68 F	50-60 %		
95 F	80-90 %		

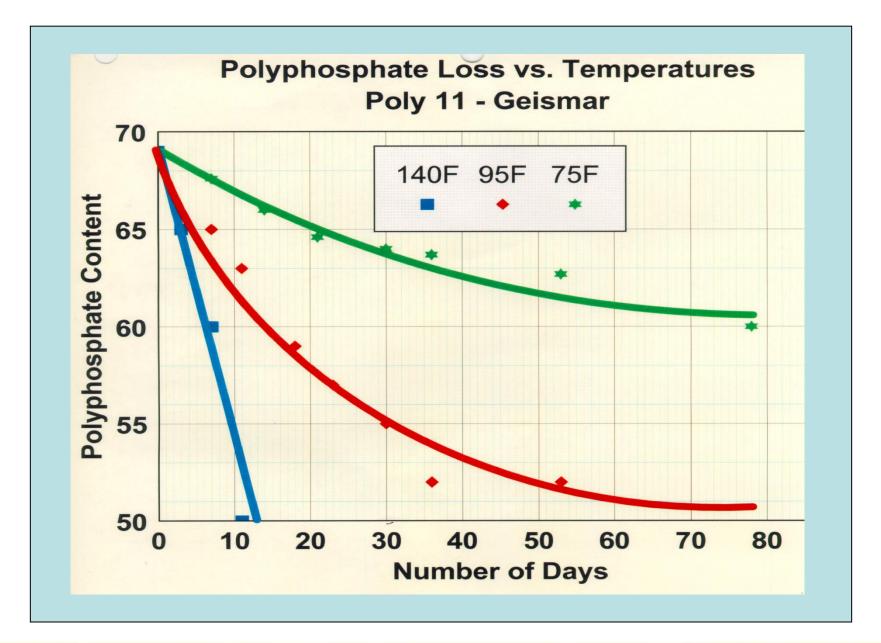

Chang and Racz, 1977

After application to soils, polyphosphate is quickly converted to orthophosphate by abundant soil enzymes

Plants utilize orthophosphates



Effect of Poly Content and N:P2O5 Ratio On Solubility



Temperature Effect On 10-34-0 Quality

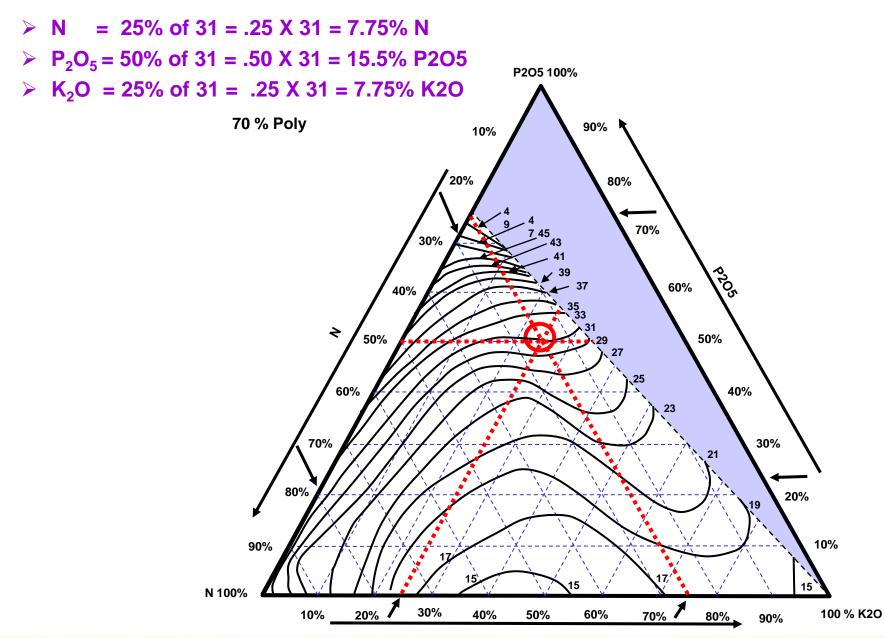
Factors Impacting Precipitate Formation In Storage

- > Amount of polyphosphate initially present
- > Amount of impurities in super-acid
- > Other 'impurities' added to product
 - ✓ Zinc
 - Previous product sludge
- > Temperature of stored product
- Length of time product stored

Zinc Sequestering By 10-34-0 Zinc Sources

Original Zinc Source	% Zinc Remaining As Original Source	% Zinc Sequestered By Polyphosphate	
Zn EDTA	100	0	
Zn Sulfate	4	96	
Zn-NH3 Complex	8	92	
Zn Phenolic Acid	11	89	
Zn Citrate	8	92	
Zn Nitrate + UAN	15	85	
Zn HEIDA	19	81	
		16. H.	

Values Are For 4 Minutes After Mixing - U of Neb.

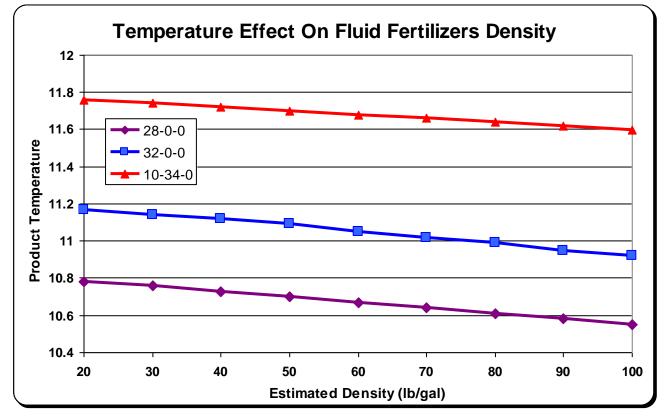


.

APP Storage and Housekeeping Suggestions

- > Do not store longer than necessary
- > Avoid storage in summer months
- > Completely empty and clean tanks regularly
- Know the quality of remaining product before adding additional product to tanks
- Do not contaminate with products/impurities that may affect storage properties
- Never mingle any calcium or magnesium with product or mix plant
- Make sure that farmers and dealers lines, tanks and equipment are completely cleaned after use

• Final maximum grade May Contain <u>31</u> Total Plant Food Units.

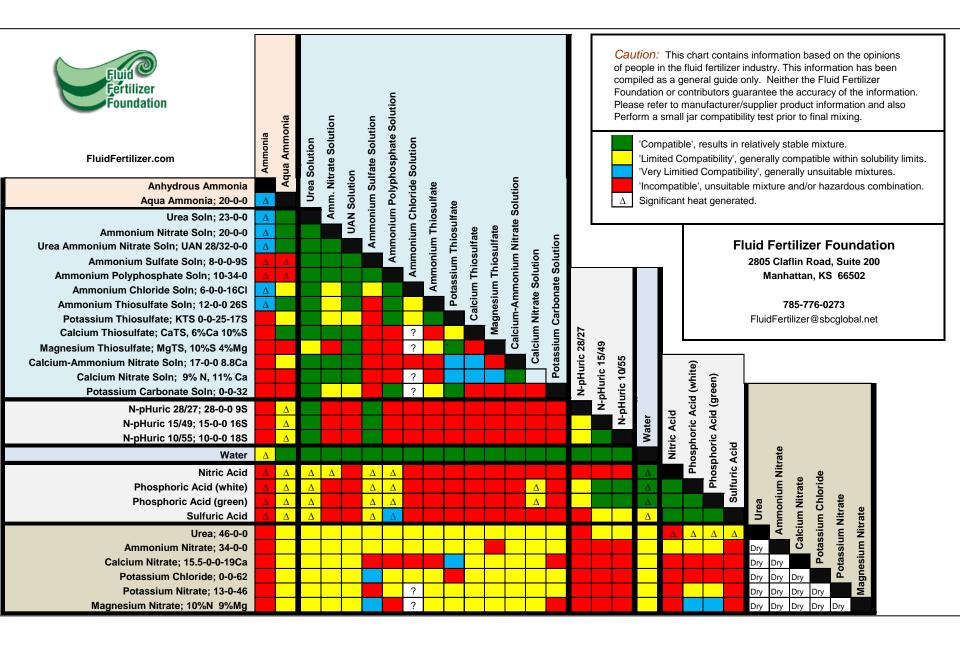

Solution Grades For UAN Solution (28-32% N), Potassium Chloride (0-0-62) and Ammonium Polyphosphate (10-34-0, 11-37-0) System

N:P ₂ O ₅ :K ₂ O Ratio	Solution Analysis (32 F Saltout)	N:P ₂ O ₅ :K ₂ O Ratio	Solution Analysis (32 F Saltout)
1-0-1	7-0-7	3-0-1	13.5-0-4.5
1-0-2	5.5-0-11	3-0-2	8.4-0-5.6
1-0-3	4.3-0-12.9	3-0-4	6.6-0-8.8
1-1-0	19.5-19.5-0	3-1-0	24.6-8.2-0
1-1-1	7.3-7.3-7.3	3-1-1	12.6-4.2-4.2
1-1-2	5.3-5.3-10.6	3-1-2	8.7-2.9-5.8
1-1-3	4.2-4.2-12.6	3-1-3	6.9-2.3-6.9
1-1-4	3.5-3.5-14	3-1-4	6-2-8
1-1-5	2.9-2.9-14.5		1-1
		3-2-0	21.6-14.4-0
1-2-0	15.3-30.6-0	3-2-1	12-8-4
1-2-1	7.7-15.4-7.7	3-2-2	8.7-5.8-5.8
1-2-2	5.1-10.2-10.2	3-2-3	6.9-4.6-6.9
1-2-3	3.8-7.6-11.4	3-2-4	6.3-4.2-8.4
1-2-4	3.2-6.4-12.8	3-2-5	5.7-3.8-9.5
1-2-5	2.7-5.4-13.5		5 5
1-2-6	2.3-4.6-13.8	3-3-1	11.7-11.7-3.9
		3-3-2	8.4-8.4-5.6
1-3-0	12.5-37.5-0	3-3-4	6.3-6.3-8.4
1-3-1	7.4-22.2-7.4	3-3-4	5.7-5.7-9.5
1-3-2	4.7-14.1-9.4	3-3-5	3.7-3.7-9.3
1-3-3	3.5-10.5-10.5	2 4 1	11 4 15 2 2 8
1-3-4	2.9-8.7-11.6	3-4-1	11.4-15.2-3.8
1-3-5	2.5-7.5-12.5	3-4-2	9-12-6
1-3-6	2.2-6.6-13.2		

Typical Characteristics Of Several Fluid Fertilizer Products

Source	Analysis	Density	Salt-Out	General Comments
	<i>N-P</i> ₂ O ₅ - <i>K</i> ₂ O	Lbs/gal	°F	
UAN	28-0-0	10.67	0	~ 30% water
UAN	32-0-0	11.06	28 - 32	~ 20% water
ATS	12-0-0-26S	11.04	<20	Fluid S Source of Choice
APP	10-34-0	11.65	<10	11-37-0 grade also

Estimated Density Of Fluid Products						
Product Temperature 28-0-0 32-0-0 10-34-						
		- lb / gal				
20	10.78	11.17	11.76			
30	10.76	11.14	11.74			
40	10.73	11.12	11.72			
50	10.7	11.09	11.7			
60	10.67	11.05	11.68			
70	10.64	11.02	11.66			
80	10.61	10.99	11.64			
90	10.58	10.95	11.62			
100	10.55	10.92	11.6			


Salt-out – Crystals form as solution cools; goes back in solution as product is warmed. Example; UAN Solution.

Precipitate formation – Non-crystalline mass forms which has much lower solubility than original ingredients in solution. Example; Improperly stored fluid phosphates

Heat generator – Generates chemical heat when producing solutions. Examples; ammonia + phosphoric acid; dilution of sulfuric acid)

Fume generator – Generates fumes which can be safety hazard. Example; UAN solution + Potassium carbonate \rightarrow ammonia fumes.

 $2NH_4NO_3 + K_2CO_3 \rightarrow 2KNO_3 + (NH_4)_2CO_3$ $2NH_3 \uparrow^{\downarrow} + H_2CO_3$ UAN in Irrigation Water ? $H_2O \stackrel{\downarrow}{\neq} CO_2 \uparrow^{\downarrow}$

Thank You And Enjoy The Conference


Dale F. Leikam

Fluid Fertilizer Foundation www.FluidFertilizer.com

The Fluid Advantage

FLEXIBILITY (Timing) FLEXIBILITY (Method) EFFICIENCY (Agronomic) EFFICIENCY (Logistics) ADAPTABILITY (Equipment) ADAPTABILITY (Cropping System)

Dale.Leikam@sbcglobal.net 785-776-0273 785-770-0009

The Fluid Advantage

